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bstract

The work presents a neural fuzzy controller (NFC) for speed loop of permanent synchronous motor (PMSM) drives based on
he technology of field programmable gate array (FPGA). Firstly, a mathematic model of the PMSM drive is derived; then to
ncrease the performance of the PMSM drive system, a fuzzy controller (FC) which its parameters are adjusted by a radial basis
unction neural network (RBF NN) is applied to the speed controller for coping with the effect of the system dynamic uncertainty.
econdly, very high speed IC hardware description language (VHDL) is adopted to describe the behavior of the speed controller
f PMSM drives which includes the circuits of space vector pulse width modulation (SVPWM), coordinate transformation, NFC,
tc. Besides, to reduce the resource usage while implementing in field programmable gate array (FPGA), a sequential execution
sing finite state machine (FSM) is applied. Thirdly, based on electronic design automation (EDA) simulator link, a simulation
ork is constructed by MATLAB/Simulink and ModelSim co-simulation mode which the PMSM, inverter and speed command

re performed in Simulink as well as the speed controller of PMSM drives is executed in ModelSim. Finally, some co-simulation
esults validate the effectiveness of the proposed NFC-based speed controller for PMSM drives.

 2012 IMACS. Published by Elsevier B.V. All rights reserved.

eywords: PMSM; Neural fuzzy control; VHDL; FPGA; ModelSim; Finite state machine; Simulink; Co-simulation

.  Introduction

PMSM has been increasingly used in many automation control fields as actuators, due to its advantages of superior
ower density, high-performance motion control with fast speed and better accuracy. But in industrial applications,
here are many uncertainties, such as system parameter uncertainty, external load disturbance, friction force, and
nmodeled uncertainty, which always diminish the performance quality of the pre-design of the motor driving system.
o cope with this problem, in recent years, many intelligent control techniques [1,5,7,11,17], such as fuzzy control,
daptive PID control, neural networks control, adaptive fuzzy control and other control method, have been developed
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

nd applied to the speed control of servo motor drives to obtain high operating performance. Although fuzzy control
as been successfully applied in several industrial automation, however, it is not an easy task to obtain an optimal set
f fuzzy membership functions and rules in FC. In this paper, a neural fuzzy controller (NFC) is proposed which RBF
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NN is firstly used to real-time identify the plant dynamic (Jacobian transformation term: (∂ωr/∂i
∗
q)) and provided more

accuracy plant information; then based on the gradient descent method and the real-time identified plant information,
parameters of FC can be tuned to a near-optimal condition.

In implementation, although the execution of NFC requires many computations, FPGA can provide a solution in
this issue. Especially, FPGA with programmable hard-wired feature, fast computation ability, shorter design cycle,
embedding processor, low power consumption and higher density is very suitable for the implementation of the
digital system [14–16]. Although the digital signal processor (DSP) is another solution to provide a flexible skill in
the intelligent control technique, it suffers from a long period of development and exhausts many resources of the
CPU [18]. However, FPGA implementation of a RBF NN has been developed in literatures [2,6]. Brassai et al. [2]
applied the RBF NN in the area of robotics and control. The computations of neurons in hidden layer of RBF NN and
weight adaption module adopt typical parallel implementation on FPGA. In addition, table look up method is used to
develop the activation function. Kim et al. [6] firstly develop a floating-point processor on FPGA. Then based on this
floating-point processor, a microprogram is written to implement the RBF NN with on-line learning back-propagation
algorithm. The Taylor series is considered to compute the Gaussian function. However, a floating-point processor
consumes FPGA resources and the executing speed might be slow. Further, in the hardware realization of an intelligent
control algorithm, except the parallel processing method, the sequential execution method is alternative. The former
method with continuous and simultaneous operation has the advantage of fast computation ability, but consumes much
more FPGA resources. The latter method separates the overall computation with several steps and the resources with
same function in each step will be common use; therefore it can greatly save much FPGA resources. In this paper,
a method mixed with parallel processing and sequential execution is adopted to compute the NFC algorithm. Except
that the computation of neurons in the hidden layer of RBF NN is applied by the parallel processing method, others
computation, such as the Gaussian function, weight adaption module and Jacobian function in RBF NN as well as
the fuzzy control algorithm are all presented by the sequential execution method. Although the sequential execution
method needs to spend more computation time, it does not loss any control performance due to the fast computation
power in FPGA. In this paper, finite state machine (FSM), which behavior is easy to describe by VHDL, is applied to
model the computation process of sequential execution method.

Recently, a co-simulation work by electronic design automation (EDA) simulator link has been gradually applied to
verify the effectiveness of the Verilog and VHDL code in the motor drive system [3,4,8–10]. The EDA simulator link
[12] provides a co-simulation interface between MALTAB or Simulink and HDL simulators-ModelSim [13]. Using
it you can verify a VHDL, Verilog, or mixed-language implementation against your Simulink model or MATLAB
algorithm [12]. Therefore, EDA simulator link lets you use MATLAB code and Simulink models as a test bench that
generates stimulus for an HDL simulation and analyzes the simulation’s response [12]. In this paper, a co-simulation
by EDA simulator link is applied. The PMSM, inverter and speed command are performed in Simulink and the NFC-
based speed controller described by VHDL code is executed in ModelSim. Finally, some simulations results validate
the effectiveness of the proposed NFC-based speed controller of PMSM drives.

2. System  description  of  PMSM  drive  and  speed  controller  design

The simulation architecture of NFC-based speed control for PMSM drive is shown in Fig. 1. The modeling of
PMSM and the algorithm of the neural fuzzy controller are introduced as follows.

2.1. Mathematical  model  of  PMSM

The typical mathematical model of a PMSM is described, in two-axis d–q  synchronous rotating reference frame,
as follows

did =  − Rs
id +  ωe

Lq
iq + 1

vd (1)
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

dt Ld Ld Ld

diq

dt
=  −ωe

Ld

Lq

id − Rs

Lq

iq −  ωe

λf

Lq

+ 1

Lq

vq (2)
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Fig. 1. The simulation architecture of NFC-based speed control for PMSM drive.

here vd and vq are the d  and q  axis voltages; id and iq, are the d  and q  axis currents; Rs is the phase winding resistance;
d and Lq are the d  and q  axis inductance; ωe is the rotating speed of magnet flux; and λf is the permanent magnet flux

inkage.
The current loop control of PMSM drive in Fig. 1 is based on a vector control approach. That is, if the id is

ontrolled to 0 in Fig. 1, the PMSM will be decoupled and controlling a PMSM like to control a DC motor. Therefore,
fter decoupling, the torque of PMSM can be written as the following equation,

Te = 3P

4
λf iq�  Ktiq (3)

ith

Kt = 3P

4
λf (4)

Considering the mechanical load, the overall dynamic equation of PMSM drive system is obtained by

Jm

d

dt
ωr +  Bmωr =  Te −  TL (5)

here Te is the motor torque, Kt is torque constant, Jm is the inertial value, Bm is damping ratio, TL is the external
orque, and ωr is rotor speed.

.2. Design  of  neural  fuzzy  controller  (NFC)

The dash rectangular area in Fig. 1 presents the architecture of an NFC for the PMSM drive. It consists of a FC, a
eference model and a RBF NN based parameter adjusting mechanism. Detailed description of these is as follows.

.2.1. Fuzzy  controller  (FC)
The FC in this study uses singleton fuzzifier, triangular membership function, product-inference rule and central

verage defuzzifier method. In Fig. 1, the tracking error e  and the error change de  are defined by

e(k) =  ωm(k) −  ωr(k) (6)
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

de(k) =  e(k) −  e(k  −  1) (7)

here uf represents the output of the FC and ωm is the output of reference model. The design procedure of FC algorithm
s as follows. Firstly, the linguist value of E  and dE  are {A0, A1, A2, A3, A4, A5, A6}  and {B0, B1, B2, B3, B4, B5, B6},

dx.doi.org/10.1016/j.matcom.2012.07.012
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Fig. 2. The symmetrical triangular membership function of e and de and fuzzy rule table.

respectively. Each linguist value of E  and dE  is based on the symmetrical triangular membership function, which is
shown in Fig. 2. Secondly, the computation of the membership degree for e  and de  are done. Fig. 2 shows that the only
two linguistic values are excited (resulting in a non-zero membership) in any input value, and the membership degree
is obtained by

μAi (e) = ei+1 −  e

ei+1 −  ei

and μAi+1 (e) =  1 −  μAi (e) (8)

Similar results can be obtained in computing the membership degree μBj (de). Thirdly, the selection of the initial
FC rules refers to the dynamic response characteristics, such as,

IF e  is Ai and �e is Bj THEN uf is cj,i,  (9)

where i  and j  are from 0 to 6, Ai and Bj are fuzzy numbers, and cj,i is the real number. Finally, to construct the fuzzy
system uf(e, de), the singleton fuzzifier, product-inference rule, and central average defuzzifier method is adopted.
Although there are total 49 fuzzy rules in Fig. 2 will be inferred, actually only 4 fuzzy rules can be effectively excited
to generate a non-zero output. Therefore, if an error e is located between ei and ei+1, and an error change de  is located
between dej and dej+1, only four linguistic values Ai, Ai+1, Bj, Bj+1 and corresponding consequent values cj,i, cj+1,i,
cj,i+1, cj+1,i+1 can be excited, and the output of the fuzzy system can be inferred by the following expression:

uf (e,  de) =
∑i+1

n=i

∑j+1
m=jcm,n[μAn (e) ×  μBm (de)]∑i+1

n=i

∑j+1
m=jμAn (e) ×  μBm (de)

�

i+1∑
n=i

j+1∑
m=j

cm,n ×  dn,m (10)

where dn,m�  μAn (e) ×  μBm (de). And those cm,n are adjustable parameters. In addition, by using (8), it is straightforward

to obtain
∑i+1

n=i

∑j+1
m=jdn,m =  1 in (10).
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

2.2.2.  Radial  basis  function  neural  network  (RBF  NN)
The RBF NN adopted here is a three-layer architecture which is shown in Fig. 3 and comprised of one input layer,

one hidden layer and one output layer.

dx.doi.org/10.1016/j.matcom.2012.07.012
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Fig. 3. The architecture of RBF NN.

The RBF NN has three inputs by i∗q(k), ωr(k  −  1), ωr(k  −  2) and its vector form is represented by

X =  [i∗q(k),  ωr(k  −  1),  ωr(k  −  2)]T (11)

urthermore, the multivariate Gaussian function is used as the activated function in hidden layer of RBF NN, and its
ormulation is shown as follows.

hr =  exp

(
−||X  −  cr||2

2σ2
r

)
, r  =  1,  2,  3,  4,  . . . p (12)

here cr = [cr1, cr2, cr3]T, p  is the number of neuron in hidden layer, σr denotes the node center and node variance of
th neuron, and ||X  − cr|| is the norm value which is measured by the inputs and the node center at each neuron. And
he network output in Fig. 3 can be written as

ωrbf =
p∑

r=1

wrhr (13)

here ωrbf is the output value; wr and hr are the weight and output of rth neuron, respectively.
The instantaneous cost function is defined as follows.

J = 1

2
(ωrbf −  ωr)

2�
1

2
e2
nn (14)

ccording to the gradient descent method, the learning algorithm of weights, node center and variance are as follows:

wr(k  +  1) =  wr(k) +  ηenn(k)hr(k) (15)

crs(k  +  1) =  crs(k) +  ηenn(k)wr(k)hr(k)
Xs(k) −  crs(k)

σ2
r (k)

(16)

σr(k  +  1) =  σr(k) +  ηenn(k)wr(k)hr(k)
||X(k) −  cr(k)||2

σ3
r (k)

(17)

here r  = 1,2,.  .  .p, s  = 1, 2, 3 and η  is a learning rate. Further, the (∂ωr/∂i
∗
q) is Jacobian transformation and can be

erived from Fig. 3 and (12)

∂ωr

∂i∗q
≈ ∂ωrbf

∂i∗q
=

p∑
r=1

wrhr

cr1 −  i∗q(k)

σ2
r

(18)

.2.3. Reference  model  (RM)
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

Second order system as follows is usually considered as the RM in the adaptive control system

ωm(s)

ω∗
r (s)

= ω2
n

s2 +  2ςωns  +  ω2
n

(19)

dx.doi.org/10.1016/j.matcom.2012.07.012
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where ωn is natural frequency and ς  is damping ratio. Furthermore, applying the bilinear transformation, (19) can be
transformed to a discrete model by

ωm(z−1)

ω∗
r (z−1)

= θ0 +  θ1z
−1 +  θ2z

−2

1 +  φ1z−1 +  φ2z−2 (20)

and the difference equation is written as.

ωm(k) =  −φ1ωm(k  −  1) −  φ2ωm(k  −  2) +  θ0ω
∗
r (k) +  θ1ω

∗
r (k  −  1) +  θ2ω

∗
r (k  −  2) (21)

2.2.4. Adjusting  mechanism  of  FC
The gradient descent method is used to derive the NFC learning law in Fig. 1. The adjusting mechanism of FC

parameters is to minimize the square error between the rotor speed and the output of the reference model. The
instantaneous cost function is firstly defined by

Je �
1

2
e2 = 1

2
(ωm −  ωr)

2 (22)

and the parameters of cm,n are adjusted according to

�cm,n ∝  − ∂Je

∂cm,n

=  −α
∂Je

∂cm,n

(23)

where α  represents learning rate. Secondly, the chain rule is used, and the partial differential equation for Je in (22)
can be written as

∂Je

∂cm,n

=  −e
∂ωr

∂uf

∂uf

∂cm,n

(24)

Further, from (10) and using the Jacobian formulation from (18), we can, respectively, get

∂uf (k)

∂cm,n(k)
= dn,m (25)

and,

∂ωr

∂uf

≈  (KP +  Ki)
∂ωrbf

∂i∗q
=  (KP +  Ki)

p∑
r=1

wrhr

cr1 −  i∗q(k)

σ2
r

(26)

Therefore, substituting (25) and (26) into (24), the parameters cm,n of fuzzy controller described in (10) can be adjusted
by the following expression.

�cm,n(k) =  αe(k)(Kp +  Ki)dn,m

p∑
r=1

wrhr

cr1 −  i∗q(k)

σ2
r

(27)

with m  = j, j + 1 and n  = i, i + 1.

3. Design  of  FPGA-based  speed  controller  for  PMSM  drive

The internal architecture of the proposed FPGA-based speed controller for PMSM drive is shown in Fig. 4. The
inputs of this controller are speed command ω∗

r , rotor speed ωr, flux angle θe, measured three-phase currents (ia,
ib, ic), and the output is PWM command. The speed controller mainly includes a NFC-based speed controller, a
current controller and coordinate transformation (CCCT), a SVPWM generation, frequency divider, etc. The sampling
frequency of current and speed control is designed with 16 kHz and 2 kHz, respectively. The input clock is 50 MHz and
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

the frequency divider generates 50 MHz (Clk) and 12.5 MHz (Clk-step) clock to supply all modules of the FPGA-based
speed controller. All modules in Fig. 4 are described by VHDL and simulated in ModelSim. The FPGA resource usages
of CCCT, SVPWM and NFC controller in Fig. 4, with the example of Altera – Cyclone EP2C70, need 647 LEs (logic
elements) and 196,608 RAM bits, 1200 LEs and 0 RAM bit, 13,806 LEs and 0 RAM bit, respectively. The circuit

dx.doi.org/10.1016/j.matcom.2012.07.012
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Fig. 4. Internal circuit of the proposed FPGA-based speed controller for PMSM drive.

esigns of CCCT and SVPWM refer to [7]. The following paragraphs focus on the description of circuit design in
FC with detail.

.1.  Finite  state  machine  (FSM)  method

To reduce the use of the hardware resource, finite state machine (FSM) is adopted to model the computing process
f algorithm. Herein, the computation of the sum of product (SOP) shown below is taken as an example to present the
dvantage of FSM.

Y  =  a1 ×  x1 +  a2 ×  x2 +  a3 ×  x3 (28)

wo kinds of design method are presented to realize the computation of SOP. There are parallel processing method and
equential execution method. Parallel processing with the designed SOP circuit is shown in Fig. 5(a), which will operate
ontinuously and simultaneously. The SOP circuit requires 2 adders, 3 multipliers, and merely near one clock time
o complete the overall computation. With the advantage of fast computation ability, the parallel processing method,
owever, consumes much more FPGA resources. To solve this problem, a sequential execution method using FMS to
odel SOP circuit is adopted and shown in Fig. 5(b). The FSM method uses one adder, one multiplier and manipulates

 steps (or 5 clocks time) machine to carry out the overall computation of SOP. Compared to parallel processing
ethod, the FSM method requires more operation time (if one clock time is 80 ns, 5 clocks needs 0.4 �s) in executing
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

OP circuit; nevertheless, it does not loss any computation power. As a result, the more complicated computation in
lgorithm, the more FPGA resources will be saved by applying FSM method. Besides, the state diagram in Fig. 5(a)
s easy to be described by VHDL.
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Fig. 5. Computation of SOP by using (a) parallel operation and (b) sequential execution method using FMS.

dx.doi.org/10.1016/j.matcom.2012.07.012
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Fig. 6. State diagram of an FSM for describing the exponential function.

3.2.  Behavior  description  of  exponential  function

According to the architecture of hidden layer in RBF NN in (12), it needs to compute the exponential function and
is defined as follows

hr =  exp

(
−||X  −  cr||2

2σ2
r

)
�  exp(−u) (29)

To simplify the computation, the input of exponential function is limited within 0–4 because if u  ≥  4 the output
hr ≤  exp(−  4) = 0.0183 will approximate to zero, otherwise if 0 ≤  u < 4, (29) can be computed by using Taylor expansion
series.

hr =  exp(−u) =
∝∑

n=0

(−1)n
un

n!
≈

12∑
n=0

(−1)n
un

n!
(30)

The 12th order is selected in (30). To normalize the input value, we define (r  = u/4) and to avoid the numerical overflow
condition during computation, (30) is divided by 16. Therefore, (30) becomes

hr =  16
exp(−4r)

16
≈ 16

12∑
n=0

(−1)n
4n−2rn

n!
�  16

12∑
n=0

anr
n (31)

where an�(−1)n(4n−2/n!) by a0 = 0.00625, a1 = −  0.25, . . ., a12 = 0.00218909.
Sequential execution is herein adopted to evaluate the polynomial of degree twelve in (31), and we transfer the form

of (31) as follows for easy sequential computation.

hr =  16((((((((((((a12r  +  a11)r  +  a10)r  +  a9)r  +  a8)r  +  a7)r  +  a6)r  +  a5)r  +  a4)r  +  a3)r  (32)

+ a2)r  +  a1)r  +  a0)

FSM is employed to model the polynomial form in (32) and it is shown in Fig. 6, which uses one adder, one multiplier,
one comparator and two shifters as well as manipulates 28 steps machine to carry out the overall computation. The
SR(2) and SL(4) in Fig. 6 represent right shift with 2-bit and left shift with 4-bit, respectively. The multiplier and adder
apply Altera LPM (library parameterized modules) standard. The FSM can be easily described by VHDL. Moreover,
the operation of each step in Fig. 6 can be completed within 80 ns (12.5 MHz clock); therefore total 28 steps only need
2.24 �s operational times.
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

3.3.  Behavior  description  of  a neuron  in  RBF  NN

After describing the behavior of exponential function, we further apply it in the behavior description of computing
a neuron in RBF NN. In each neuron in Fig. 3, it needs to perform the function of computing the mutivariate Gaussian

dx.doi.org/10.1016/j.matcom.2012.07.012
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Fig. 7. State diagram of an FSM for describing rth neuron computation in RBF NN.

unction in (12), individual network output in (13), individual Jacobian value in (18) and individual parameters learning
n (15)–(17). According to this requirements, FSM for describing rth neuron computation in RBF NN is presented in
ig. 7 which the inputs are i∗q(k), ωr(k  −  1), ωr(k  −  2) and outputs are Or (individual network output) and Jr (individual
acobian value). Further, in Fig. 7, steps s0–s5 execute the computation of norm value; steps s6–s35 describe the
omputation of exponential function and the outputs of individual network output and Jacobian value; steps s36–s38 are
he weight update; steps s39–s41 are the variance update and s42–s51 are the node center update. The operation of each
tep in Fig. 7 can be completed within 80 ns (12.5 MHz clock); therefore total 52 steps only need 4.16 �s operational
imes. In Fig. 7, except exponential function, the divider is also a complicated component in hardware implementation.
erein, we directly adopt Altera LPM standard to realize it. Fig. 8 shows a VHDL example to describe the divider

omputation of Y  = A/B. The data format of two inputs A, B  and one output Y  all belong to the 16 bits, Q15 and signed
umber. The divider component adopts 32 bits operation with signed representation. The inputs A, B  firstly need to
ign-extension to 32 bits, then sent to the divider component and obtain a 32 bits output of sat. Finally, the divider
utput of Y  is extracted from 16th bit down to 1st of sat. The resource usage of a 32 bits divider component in Fig. 8,
ith the example of Altera – Cyclone EP2C70, needs 980 LEs.

.4. Behavior  description  of  NFC

After describing the behavior of a neuron in RBF NN, we further apply it in the behavior description of computing
 NFC. In the proposed system, the number of neuron in hidden layer is chosen by three. The FSM employed to model
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

he NFC-based speed controller is shown in Fig. 9, which uses one adder, one multiplier, three neuron computational
locks (the detail for each one is shown in Fig. 7), some registers, etc. and manipulates 92 steps machine to carry out the
verall computation. The data types are designed with 16-bit length, two complements and Q15 format. The multiplier

dx.doi.org/10.1016/j.matcom.2012.07.012
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LIBRARY IEEE ;

USE IEEE. std_logic_ 116 4.all;

USE IEEE. std_logic_ ari th.all ;

USE IEEE.std_logic_ sign ed.all;

LIBRARY lpm;

USE lp m.LPM_COMPONENTS.ALL;

ENTITY  Devider IS
port  ( clk,clk_D : IN   STD_LOGIC;

A,B                : I N  STD_LOGIC_VE CTOR(15  do wnto 0);

Y                    : OUT STD_LOGIC_VE CTOR(15  do wnto 0) );

END De vide r;

ARC HITECTURE Devide _arch OF Devider IS
SIGNAL dev ideA,devideB :STD_LOG IC_VECTOR(3 1 do wnto 0);

SIGNAL sat        :STD_LOGI C_VECTOR(3 1 do wnt o 0);

SIGNAL CNT              :STD_LOGI C_VE CTOR(7  downto 0) ;

BEGIN

m1: lp m_divide

GENERIC 

MAP (L PM_WI DTHN=>32,  LPM_WIDTHD= >32, LPM_PIPE LINE=>1,

LPM_NREP RES ENTATION=> "SI GNED", LPM_DREPRES ENTATION=> "SIGNED" )

GEN: BLOC K

BEGIN

PROCESS (CLK_D)

BEGIN

IF clk_D'EVENT and  clk_D= '1' THEN

CNT<=C NT+1;

IF CNT=X"00 " THEN

devideA<=A&X"0000 ";

IF B(1 5)='0' THEN

devideB< =X"0000"&B ;

ELSE 

devideB<=X"FFF F"&B;

END IF ;

ELSIF CN T=X" 01" THEN

Y<= sat(16 downto 1) ;

CNT <= X"00";

END IF ;

END IF;

END PROCESS ;

END BL OCK GEN;

END Devide _arch;

PORT MAP (numer=>devideA,denom=>devideB,cl ock => clk,quotient=>s at);

Fig. 8. Example of divider computation using VHDL.

and adder apply Altera LPM standard. Although the algorithm of the NFC is high complexity, the FSM can give a
very adequate modeling and easily be described by VHDL. In Fig. 9, steps s0–s5 execute the computation of reference
model output; steps s6–s7 are for the computation of speed error and error change; steps s8–s12 execute the fuzzification
and look-up fuzzy table; s13–s21 are for the defuzzification; s22–s25 are the computation of current command; s26–s81
describe the computation of RBF NN and Jacobian value by using three parallel neuron computational block; finally
s82–s91 execute the tuning of fuzzy rule parameters. The operation of each step in Fig. 9 can be completed within 80 ns
(12.5 MHz clock); therefore total 92 steps only need 7.36 �s operational times. It does not loss any control performance
for the overall system because the operation time with 7.36 �s is less than the sampling interval, 500 �s (2 kHz), of the
speed control loop in Fig. 1. Finally, the execution time of NFC in software by using Nios II processor is evaluated and
it is 1190.8 �s. It shows that the computational power in hardware of FPGA is about 160 times faster than in software
by using Nios II processor.

4.  Simulation  results

The NFC-based speed control block diagram for PMSM drive is shown in Fig. 1 and its Simulink/ModelSim co-
simulation architecture is presented in Fig. 10. The SimPowerSystem blockset in the Simulink executes the PMSM
and the inverter. The EDA simulator link for ModelSim executes the co-simulation using VHDL code running in
ModelSim program with two works. The work-1 of ModelSim in Fig. 10 performs the function of speed loop neural
fuzzy controller (NFC) and the work-2 executes the function of current controller and coordinate transformation
(CCCT) and SVPWM. All works in ModelSim are described by VHDL. The sampling frequency of current and speed
control is designed with 16 kHz and 2 kHz, respectively. The clocks of 50 MHz and 12.5 MHz will supply all works
of ModelSim. The designed PMSM parameters used in simulation are that pole pairs is 4, stator phase resistance is
1.3 �, stator inductance is 6.3 mH, inertia is J  = 0.000108 kg m2 and friction factor is F = 0.0013 N m s.

To evaluate the effectiveness of the proposed control algorithm, three tested cases with various PMSM parameters
are conducted, in which

Case 1: (normal-load condition)

J =  0.000108,  F  =  0.0013 (33)

Case II: (light-load condition)

J =  0.000108/3,  F  =  0.0013/3 (34)

Case III: (heavy-load condition)
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

J =  0.000108 ×  3,  F  =  0.0013 ×  3 (35)

The co-simulation is carried out in Fig. 10. The control objective is to control the rotor speed of PMSM to track the
output of the reference model. In the case of the FC design, the membership function and the fuzzy rule table are
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Fig. 9. State diagram of an FSM for describing the NFC in speed loop controller of PMSM drive.

esigned in Fig. 11. Besides, the parameters of PI controller in Fig. 1 are selected as Kp = 1 and Ki = 0.025. Square
aves with period of 0.16 s and magnitude variation from 0 to 500 rpm up to 1000 to 1500 rpm is adopted as a tested

nput command. To evaluate the tracking performance of FC at various system conditions, the system parameters are
nitially designed at the normal-load condition (Case I), and the simulation result is shown in Fig. 12. It presents
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

 good speed following response in Fig. 12(a) and a complete current decoupled effect in Fig. 12(b). Therefore, a
esired rotor speed response with the characteristics of no overshoot, 0.017 s rising time and zero steady-state value,
hich approximates the speed response curve in Fig. 12(a), is considered as a comparator curve while PMSM runs

t different condition. However, when the system parameters change to the light-load (Case II) and heavy-load (Case

dx.doi.org/10.1016/j.matcom.2012.07.012
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Fig. 10. Simulink and ModelSim co-simulation architecture for NFC-based speed control of PMSM drive.

III) condition, the speed and current responses are shown in Figs. 13 and 14. The rotor speed response in Fig. 13 lags
behind the desired rotor speed response with a large overshoot condition and in Fig. 14 is ahead of the desired rotor
speed response with a small overshoot condition. It shows that the rotor speed response is greatly affected by system
parameters variation if the speed controller uses FC only.
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

To cope with the system uncertainty problem, a NFC is adopted in Fig. 1. The NFC consists of a FC, a RM and a
RBF NN based adjusting mechanism. The RBF NN is applied to real-time identify the plant dynamic for providing an
exact plant information to the learning algorithm of FC. The desired rotor speed response with the characteristics of no

Fig. 11. Fuzzy membership function and the initial fuzzy-rule table.

dx.doi.org/10.1016/j.matcom.2012.07.012
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Fig. 12. Simulation results when FC is used and PMSM is operated at normal-load condition.

Fig. 13. Simulation results when FC is used and PMSM is operated at heavy-load condition.

Fig. 14. Simulation results when FC is used and PMSM is operated at light-load condition.
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Fig. 15. Simulation results when NFC is used and PMSM is operated at heavy-load condition.

overshoot, 0.017 s rising time and zero steady-state value in Fig. 12 is considered to design the transfer function of the
RM. According to the required specifications, a second order system with the natural frequency of 230 rad/s and the
damping ratio of 1 is chosen. Then, after applying the bilinear transformation with sampling frequency of 2 kHz, the
parameters of the difference equation in (21) are obtained by θ0 = 0.00295, θ1 = 0.0059, θ2 = 0.00295, φ1 = −1.7825,
and φ2 = 0.7943. In NFC design, the initial fuzzy parameters in Fig. 11 is the same as the FC, but the fuzzy parameters
of the cm,n can be tuned using (27) if the output of rotor speed cannot follow the output of RM. The learning rate α is set
as 0.3. The initial parameters in RBF NN are chosen by wr =  10, σr = 250, cr1 = cr2 = cr3 = 250, where r = 1, 2, 3. The
learning rate η  in RBF NN is set as 0.15. In simulation, square waves with magnitude variation from 0 to 500 rpm up
to 1000 to 1500 rpm is adopted as a tested input command and its simulation results under heavy-load and light-load
condition are presented in Figs. 15 and 16, respectively. In Fig. 15, in the beginning time, the FC is applied to the
speed loop of PMSM drive system and the rotor speed shows a lag and an overshoot response. After 0.14 s, the NFC is
adopted. Meanwhile, the cm,n parameters are tuned to an adequate value for reducing the error between the rotor speed
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

and the output of RM. Finally, the rotor speed can accurately track well after one cycle learning. In Fig. 15(b), it exhibits
that the current iq need to generate a larger current value to force the motor running speed to fast track the output of
RM. Similar results appear in the light-load condition in Fig. 16. Additionally, two another transition conditions, which

Fig. 16. Simulation results when NFC is used and PMSM is operated at light-load condition.
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Fig. 17. Simulation results when NFC is used and PMSM is operated varying from normal-load condition to heavy-load condition.

Fig. 18. Simulation results when NFC is used and PMSM is operated varying from normal-load condition to light-load condition.
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extern load is changed from normal-load to heavy-load and from normal-load to light-load condition, are considered
and evaluated, and the simulated results are shown in Figs. 17 and 18. In the former case, the control current iq in
transition conditions of Fig. 17(b) is apparently increased to speed up the motor running, but in the latter case, the
control current iq in transition conditions of 18(b) is decreased to slow down the motor running. However, it shows
that due to the tuning of control current iq by NFC, the output of rotor speed in Figs. 17(a) and 18(a) can track the
desired speed well. Therefore, the simulation results in Figs. 12–18 demonstrate that the proposed NFC-based speed
controller for PMSM drive is effective and robust.

5. Conclusions

This study has presented a FPGA-based NFC controller for PMSM drives and successfully demonstrated its per-
formance through co-simulation by using Simulink and ModelSim. In control algorithm, to cope with the system
uncertainty, a NFC is proposed and a RBF NN is used to identify the plant dynamic and provided more accuracy plant
information for parameters tuning of FC. In realization, a sequential execution using FSM is applied to model the
computing process of NFC for reducing the FPGA resource usage. Under the proposed design method, the execution
time and FPGA resource usage for computing a NFC spend only 7.36 �s and 13,806 LEs, respectively. It not only
does not loss any control performance for the overall system, but also can greatly save the FPGA resource usage.
At last, some simulation results demonstrate that in step response, the speed of PMSM can fast track the prescribed
dynamic response accurately after the proposed controller has been conducted. However, after confirming the effective
of VHDL code of NFC-based speed controller in co-simulation by using Simulink and ModelSim, the VHDL code
except A/D and QEP interface circuit, can be directly used in the experimental FPGA-based PMSM drive system for
further verifying its function in the future work.
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