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ABSTRACT This paper presents a design of a self-organizing recurrent interval type-2 Petri fuzzy controller
(SORIT2PFC) for controlling the time-varying delay systems. The control system comprises of a main
controller and a compensation controller; the SORIT2PFC as the main controller is used to imitate an ideal
controller, and the simple fuzzy compensator controller is used to eliminate the residual error. By using
a self-organizing algorithm, the structure of the proposed network can automatically achieve optimal
construction. Recurrent neural network and fuzzy Petri nets are applied to improve system performances
and to reduce computational burden. Online tune adaptive laws of the proposed controller are derived by
implementing the gradient descent method and the Lyapunov stability theorem. Finally, the control efficacy
and effectiveness of the proposed controller are verified by the numerical simulations of the time-varying
delay systems.

INDEX TERMS Type-2 fuzzy system, Petri-fuzzy, recurrent neural network, self-organizing algorithm,
time-varying delay systems.

I. INTRODUCTION
Type-1 fuzzy sets (T1FSs) were introduced by Zadeh [1]
in 1965, and have been attracting many researchers for
the past decades. Because T1FSs use precise sets in the
membership function, they can not cover the uncertainties
which come from the internal and external disturbances
well [2]. Therefore, in 1975, Zadeh provided type-2 fuzzy
sets (T2FSs), which have the uncertainty in the membership
function [3]. Because the T2FSs are complex in computa-
tion, in 2000, Liang and Mendel introduced a simple way to
implement the T2FSs, This is called the interval type-2 fuzzy
logic system (IT2FLS) [4]. Recently, many researchers have
demonstrated the advantages of IT2FLS [5]–[12]. In 2015,
Zhou et al. [11] provided an interval type-2 fuzzy con-
trol for nonlinear discrete-time systems with time-varying
delays. Later in 2018, Huang et al. [12] presented an inter-
val type-2 fuzzy logic modeling and control of a mobile
two-wheeled inverted pendulum. However, a fuzzy neural
network with fixed structure cannot achieve a better per-
formance when the system has uncertainties and distur-
bances [13]. Therefore, recently, many studies have applied
the self-organizing algorithm to obtain a suitable network size
for the fuzzy neural network structure [14]–[17]. In 2014,

Lin et al. [15] introduced a self-organizing interval type-2
fuzzy neural network for radar emitter identification. In 2017,
Lin and Le [16] provided a PSO-self-organizing inter-
val type-2 fuzzy neural network for antilock braking sys-
tems. Following that, in 2018, Sabahi [17] presented the
self-organizing fuzzy neural network applied to impedance
force control. However, most of these methods are complex,
and their control performance can be further improved. Thus,
our proposed control system will apply the recurrent neu-
ral network and the Petri Nets to achieve better learning
performance.

The recurrent neural network (RNN) was first introduced
by Hopfield [18] in 1984. RNN includes the time delays term
in its structure and is composed of many massively connected
simple neurons that can operate concurrently [19]. By apply-
ing the RNN, the system can have previous information and
hence the network performance can be further improved [20].
In the past decades, many studies have applied the feature
of the RNN to their designed network structure [21]–[25].
In 2016, Bao and Zheng [22] proposed a discrete-time recur-
rent neural network with discontinuous activation functions.
Also in 2016, Lin et al. [23] introduced a recurrent fuzzy
neural cerebellar model articulation network fault-tolerant
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control of six-phase permanent magnet synchronous motor
position servo drive. In 2017, Mansoori et al. [25] provided
an efficient recurrent neural network model for solving fuzzy
non-linear programming problems.

Petri Nets (PNs) are a graphic modeling method, which
was introduced by Peterson [26] in 1981. After that, PNs
have been widely applied to models and used to analyze
such discrete event systems as communication, manufactur-
ing, and transportation systems [27]. Since Looney proposed
the fuzzy Petri nets (FPNs), which is the combination of
fuzzy and PNs, it has attracted many researchers’ attention
in the field of artificial intelligence [28]. The FPNs have
some advantages such as reducing the computational burden
and providing a faster learning ability [29], [30]. Recently,
many studies have applied FPNs in various fields such as
control problem, system identification, prediction and clas-
sification [30]–[34]. In 2017, Bibi et al. [31] introduced a
Petri type 2 fuzzy neural networks approximator for adaptive
control of uncertain nonlinear systems. Also in 2017, Rosdi
et al. [32] provided an FPN-based classification method
for speech intelligibility detection of children with speech
impairments. Following that, in 2018, Zhu et al. [34] pre-
sented model-based fault identification of discrete event sys-
tems using partially observed Petri nets. Compare to the
previous studies in [30]–[34], this research proposes an effec-
tive control method, which combines the advantages of the
interval type-2 fuzzy network, the recurrent network, the Petri
nets, and the self-organizing algorithm. It leads the proposed
control system to better cover uncertainties, is effective in
reducing the computational burden, and makes it easy to
design the initial network parameters.

Motivated by the aforementioned discussion, in this
study, a self-organizing recurrent interval type-2 Petri fuzzy
controller (SORIT2PFC) is proposed for the time-varying
delay systems. The term time-varying delay in this model
can be considered as system uncertainties; therefore the
SORIT2PFC is proposed to better cope with these uncer-
tainties. In the control scheme, the SORIT2PFC is the main
controller, and the simple fuzzy acts as the compensator con-
troller which is used to eliminate the residual error. The main
contributions of this study include: (1) The development of a
SORIT2PFC network which has the adaptive laws for online
updating parameters; (2) The self-organizing algorithm is
applied to autonomously construct the size of the network
controller; (3) The Petri layer with a dynamic threshold is
applied to eliminate unsuitable rules and reduce the compu-
tational burden; (4) The recurrent network is applied to help
the system have previous information and improve system
performances; (5) The stability of system is proven using the
Lyapunov function approach; (6) The numerical simulation
results of the time-varying delay systems are conducted to
illustrate the effectiveness of the proposed control system.

The remainder of this paper is organized as follows: The
design of the SORIT2PFC control system is presented in
Section 2. The details of the parameter learning and the
compensator controller are shown in Section 3. The numerous

FIGURE 1. The architecture of the SORIT2PFC.

control results of the time-varying delay systems are shown
in Section 4. Finally, the conclusions are given in Section 5.

II. STRUCTURE OF THE SELF-ORGANIZING RIT2PFC
A. THE ARCHITECTURE OF RIT2PFC
The fuzzy rule of the proposed controller RIT2PFC is defined
as follows:

Rule j : IF x1 is µ̃1j and x2 is µ̃2j, . . . , and xi is µ̃ij

Then w̃jk =
[
wjk w̄jk

]
for i = 1, 2, . . . i, . . . , ni; j = 1, 2, . . . , j, . . . nj;

k = 1, 2, . . . , j, . . . nk (1)

where ni is the input dimension, nj is the number of the
firing node, and nk is the output dimension. The fuzzy set
for the ith input and the jth membership function are denoted
by µ̃ij, the output weight for connecting the jth firing node
and kth output is denoted by w̃jk .
The structure of the recurrent interval type-2 Petri fuzzy

neural network (RIT2PFNN) with the self-organizing struc-
ture is shown in Fig. 1. This structure can be described by the
functions and tasks of six layers as follow:

1) THE INPUT LAYER
This layer consists of a vector input signal x = [x1, x2, . . .
xi, . . . xni ]

T
<
ni that is directly transferred to the input of the

next layer.

2) THE MEMBERSHIP FUNCTION LAYER
Each node in this layer performs a type-2 Gaussian member-
ship function (T2GMF) combined with the recurrent term.
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FIGURE 2. Interval type-2 Gaussian membership function.

The outputs of this layer are represented as

µ
ij
= exp

−1
2

(
xri − mij

vij

)2
 (2)

µ̄ij = exp

{
−
1
2

(
x̄ri − mij

v̄ij

)2
}

(3)

where µ̃ij ∈
[
µ
ij
, µ̄ij

]
is the membership grade, which can

be obtained by the recurrent input and the T2GMF as shown
in Fig. 2; mij and ṽij ∈

[
vij, v̄ij

]
are the mean and the

uncertain variance of the T2GMF, respectively; xri and x̄ri are
the recurrent inputs, which can be given by

xri(t) = xi(t)+ rijµij(t − 1)

x̄ri(t) = xi(t)+ rijµ̄ij(t − 1) (4)

3) THE PETRI LAYER
In this layer the Petri nets act as a transition layer, which is
used to produce the tokens, and the fuzzy laws are selected
based on suitable fired nodes.

tij =

{
1, µij ≥ gth
0, µij < gth

(5)

where tij and gth are the transition nodes and the dynamic
threshold value. The equation for choosing gth is dependent
on the corresponding error as

gth =
ϕ exp (−ψE)
1+ exp (−ψE)

(6)

where ϕ and ψ are positive constants for adjusting the
Petri threshold, E = 1

2e
2 is the energy function, and e

is the tracking error, which will be introduced in the next
sub-section.

4) THE FIRING LAYER
This layer performs the product operation to obtain the fuzzy
firing strength. Themembership function layer has an interval
value

[
µ
ij
, µ̄ij

]
, therefore the firing layer also has an interval

value f̃j =
[
f
j
, f̄j
]

f
j
=

ni∏
i=1

µ
ij

and f̄j =
ni∏
i=1

µ̄ij (7)

5) THE PRE-OUTPUT LAYER
The outputs of this layer can be obtained by using the firing
nodes and the connecting weight vector, which are defined as

olk =

∑M
j=1 f

l
j wjk∑M

j=1 f
l
j

and ork =

∑M
j=1 f

r
j w̄jk∑M

j=1 f
r
j

(8)

where w̃jk =
[
wjk w̄jk

]
is the connecting weight, which is

used to connect the jth firing node and kth pre-output node.
And f il , f

i
r are the firing strengths, which are given by

f lj =

{
f̄j, j ≤ L
f
j
, j > L

and f rj =

{
f
j
, j ≤ R

f̄j, j > R
(9)

where L and R are the left and right switch points,
respectively. These values can be obtained using the KM
algorithm [35].

6) THE OUTPUT LAYER
This layer performs the algebraic sum of the pre-output space
ol and or , and is obtained as

ukSORIT2PFC = ok =

(
olk + o

r
k

)
2

(10)

B. SELF-ORGANIZING ALGORITHM FOR RIT2PFC
In designing the network structure, determining the number
of rules significantly affects the system performance. A large
number of rules will lead to a huge computation budget for
the control system, and a smaller number of rules may not
cover all the cases, especially when the input changes with a
wide range [36]. Therefore, in this study, the self-organizing
algorithm is applied to autonomously construct the network
size of the proposed RIT2PFC controller. The flowchart for
increasing and decreasing rules is shown in Fig. 3.

The condition for generating a new rule is given by

If
(
Gi < Tg

)
Then {Generate a new T2GMF and new rule}

(11)

where Tg is the preset threshold for generating a new rule, Gi
is the maximum membership grade of ith input, which can be
obtained by

Gi = max
[
µi1, µi2, . . . , µij, . . . , µinj

]
(12)

where µij =
µ
ij
+µ̄ij

2
The initial parameters for the new type-2 Gaussian mem-

bership function are given by

mM(t)+1ij = xi (t)[
vM(t)+1ij , v̄M(t)+1ij

]
= [vinit −1v, vinit +1v] (13)
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FIGURE 3. Flowchart of the structure and parameter learning for
SEIT2WCMAC.

where vinit and 1v are the initial values of the variance and
half of the uncertain variance, respectively. The total number
of existing rules at the kth step is denoted by M(k).
The condition for deleting an inappropriate rule is given by

If (Di < Td )Then
{
Deleting ith MF and its rules

}
(14)

where Td is the preset threshold for deleting an inappropriate
rule,Di is the minimummembership grade of ith input, which
can be obtained by

Di = min
[
µi1, µi2, . . . , µij, . . . , µinj

]
(15)

By using this generating and deleting algorithm, the structure
of the proposed RIT2PFC can automatically achieve optimal
construction.

III. PARAMETER LEARNING AND
COMPENSATOR CONTROLLER
A. PARAMETER LEARNING FOR SORIT2PFC
Consider a class of nth order nonlinear systems described by:

x(n)(t) = f (x(t))+ g (x(t)) u(t)+ d(t)

= f0 (x (t))+1f (x (t))

+ [g0 (x (t))+1g (x (t))] u (t)+ d (t)

= f0 (x (t))+ g0 (x (t)) u (t)+ β (x (t)) (16)

In which, the lumped uncertainty term is denoted by β (x (t))
and can be given as

β (x (t)) = 1f (x (t))+1g (x (t)) u (t)+ d (t) (17)

where x =
[
x, ẋ, ẍ, . . . x(n−1)

]T
is the state vector of system.

x(t): the system output.
u(t): the control input.
d(t): the external disturbance.
f (x), g (x): the bounded nonlinear functions.
f0 (x (t)), g0 (x (t)): the nominal parts of the bounded non-

linear functions.
1f (x (t)), 1g (x (t)): the unknown uncertainties of

bounded nonlinear functions.
The tracking error is defined as

e (t) = xd (t)− x (t) (18)

where xd (t) is the reference signal.
From (16), the ideal controller can be defined as

u∗ (t) = g−10 (x (t))
[
x(n)d (t)−f0 (x (t))−β (x (t))+KT e (t)

]
(19)

where e (t) =
[
e (t) , ė (t) , . . . , e(n−1) (t)

]T
is the system

tracking error vector; K = [kn, . . . , k2, k1]T is the feedback
gain vector.
Applying the ideal controller (19) into (16), the error

dynamics is given as:

e(n) + k1e(n−1) + . . .+ kne = 0 (20)

If the feedback gain vector K in (19) is selected accord-
ing to the coefficients of a Hurwitz polynomial, then
lim
t→∞

e (t) = 0. Since β (x (t)) is unknown or perturbed,
u∗ (t) is unobtainable.
Assume there exists an u∗SORIT2FPC to approach the u∗ (t)

u∗(t) = u∗SORIT2FPC (w
∗, w̄∗,m∗, v∗, v̄∗, t)+ ε(t) (21)

where w∗, w̄∗,m∗, v∗, v̄∗ are the optimal parameters for
w, w̄,m, v, v̄; ε(t) is the approximation error.

Since the optimal parameters in (21) cannot be obtained
exactly, we design the estimation controller as

û (t) = ûSORIT2FPC (w∗, w̄∗,m∗, v∗, v̄∗, t)+ ûF (t) (22)

where ŵ, ˆ̄w, m̂, v̂, ˆ̄v are the estimation of w∗, w̄∗,m∗, v∗, v̄∗;
ûF is the estimation of the fuzzy compensator controller.
To achieve better control performance, the high-order slid-

ing surface from [37] and [38] is applied as

s (t) =
l−1∑
l=0

(n− 1)!
l! (n− l − 1)!

(
∂

∂t

)n−l−1
λle

= e(n−1) + (n− 1) λe(n−2)

+ (n− 2) λ2e(n−3) . . .+ λn−1e (23)

where the slope of the sliding surface can be adjusted using
the positive constant λ.
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From (23), we obtained

ṡ (t) = e(n) + (n− 1) λe(n−1)

+ (n− 2) λ2e(n−2) . . .+ λn−1e(1)

= e(n) + KT e (24)

where K =
[
(n− 1) λ, (n− 2) λ2, . . . .λn−1

]T
∈ <

n−1 is the
positive gain vector. If the feedback gain vector K is selected
according to the coefficients of a Hurwitz polynomial, then
lim
t→∞

e (t) = 0.
Defining the Lyapunov cost function as

V1 (s (t)) =
1
2
s2 (t) (25)

Taking the derivative of (25) and using (16), (19), (22), (24),
we obtained

V̇1(t) = s(t)ṡ(t) = s(t)
[
e(n) + KT e

]
= s(t)[x(n)d (t)− (f0 (x (t))+ g0 (x (t))

×

(
ûSORIT2FPC

(
ŵ, ˆ̄w, m̂, σ̂ , ˆ̄σ, t

)
+ ûF (t)

)
+β (x (t)))+ KT e] (26)

Applying the chain rule and the gradient descent method,
the adaptive laws for updating ŵ, ˆ̄w, m̂, v̂, ˆ̄v can be
expressed as

ŵjk (t + 1)

= ŵjk (t)− η̂w
∂s (t) ṡ (t)
∂ŵjk

= ŵjk (t)− η̂w

[
∂s (t) ṡ (t)
∂ ûSORIT2FPC

∂ ûkSORIT2FPC
∂olk

∂olk
∂ŵjk

]

= ŵj (t)+
1
2
η̂ws (t) g0 (x (t))

f lj∑M
j=1 f

l
j

(27)

ˆ̄wjk (t + 1)

= ˆ̄wjk (t)− η̂w
∂s (t) ṡ (t)

∂ ˆ̄wjk

= ˆ̄wjk (t)− η̂w

[
∂s (t) ṡ (t)
∂ ûSORIT2FPC

∂ ûkSORIT2FPC
∂ork

∂ork
∂ ˆ̄wj

]

= ˆ̄wj (t)+
1
2
η̂ws (t) g0 (x (t))

f rj∑M
j=1 f

r
j

(28)

m̂ij (t + 1)

= m̂ij (t)− η̂m
∂s (t) ṡ (t)
∂m̂ij

= m̂ij (t)− η̂m

[
1
2
∂s (t) ṡ (t)

∂ ûkSORIT2FPC

(
∂olk
∂f lj

∂f lj
∂m̂ij
+
∂ork
∂f rj

∂f rj
∂m̂ij

)]
= m̂ij (t)+

1
2
η̂ms (t) g0 (x (t))

×


(
wjk − o

l
k

)
∑M

j=1 f
l
j

∂f lj
∂m̂ij
+

(
w̄jk − ork

)∑M
j=1 f

r
j

∂f rj
∂m̂ij

 (29)

v̂ij (t + 1)

= v̂ij (t)− η̂v
∂s (t) ṡ (t)
∂ v̂ij

= v̂ij (t)− η̂v

[
1
2
∂s (t) ṡ (t)

∂ ûkSORIT2FPC

(
∂olk
∂f lj

∂f lj
∂ v̂ij
+
∂ork
∂f rj

∂f rj
∂ v̂ij

)]
= v̂ij (t)+

1
2
η̂vs (t) g0 (x (t))

×


(
wjk − o

l
k

)
∑M

j=1 f
l
j

∂f lj
∂ v̂ij
+

(
w̄jk − ork

)∑M
j=1 f

r
j

∂f rj
∂ v̂ij

 (30)

ˆ̄vij (t + 1)

= ˆ̄vij (t)− η̂v
∂s (t) ṡ (t)

∂ ˆ̄vij

= ˆ̄vij (t)− η̂v

[
1
2
∂s (t) ṡ (t)

∂ ûkSORIT2FPC

(
∂olk
∂f lj

∂f lj
∂ ˆ̄vij
+
∂ork
∂f rj

∂f rj
∂ ˆ̄vij

)]
= ˆ̄vij (t)+

1
2
η̂vs (t) g0 (x (t))

×


(
wjk − o

l
k

)
∑M

j=1 f
l
j

∂f lj
∂ ˆ̄vij
+

(
w̄jk − ork

)∑M
j=1 f

r
j

∂f rj
∂ ˆ̄vij

 (31)

where η̂w, η̂m, η̂v are the learning-rates for adjusting the adap-
tive convergence speed. From (7), the derivative term of
f lj and f rj in (29) - (31) can be f i or f̄ i

∂f
j

∂m̂ij
=

∂f
j

∂µ
ij

∂µ
ij

∂m̂ij
= f

j

xri − m̂ij(
σ̂ ij

)2 ;
∂ f̄j
∂m̂ij
=

∂ f̄j
∂µ̄ij

∂µ̄ij

∂m̂ij
= f̄j

x̄ri − m̂ij(
ˆ̄vij
)2 (32)

∂f
j

∂ ˆ̄vij
=

∂f
j

∂µ
ij

∂µ
ij

∂ ˆ̄vij
= f

j

(
xri − m̂ij

)2(
ˆ̄vij
)3 ;

∂ f̄j
∂ ˆ̄vij
=

∂ f̄j
∂µ̄ij

∂µ̄ij

∂ ˆ̄vij
= f̄j

(
x̄ri − m̂ij

)2(
ˆ̄vij
)3 (33)

∂f
j

∂ v̂ij
=

∂f
j

∂µ
ij

∂µ
ij

∂ v̂ij
= f

j

(
xri − m̂ij

)2(
v̂ij
)3 ;

∂ f̄j
∂ v̂ij
=

∂ f̄j
∂µ̄ij

∂µ̄ij

∂ v̂ij
= f̄j

(
x̄ri − m̂ij

)2(
v̂ij
)3 (34)

Applying the adaptive laws derived in (27)-(31), the optimal
parameters for the proposed controller SERIT2FPC can be
obtained, and the control system can achieve the desired
performance.

The convergence Analysis:
Taking the derivative of (25), yields:

V̇ (s (t)) = s (t) ṡ (t) (35)
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Defined

Pχ (k) =
∂ ûkSORIT2FPC

∂χ
for χ = ŵ, ˆ̄w, m̂, v̂, ˆ̄v (36)

where

Pŵ (t)

=
∂ ûkSORIT2FPC

∂ŵ

=

[
∂ ûkSORIT2FPC

∂ŵ11
, . . . ,

∂ ûkSORIT2FPC
∂ŵ1nk

,
∂ ûkSORIT2FPC

∂ŵ21
,

. . .,
∂ ûkSORIT2FPC
∂ŵ2nk

,. . .,
∂ ûkSORIT2FPC

∂ŵnj1
,. . .,

∂ ûkSORIT2FPC
∂ŵninj

]
P ˆ̄w (t)

=
∂ ûkSORIT2FPC

∂ ˆ̄w

=

[
∂ ûkSORIT2FPC

∂ ¯̂w11
, . . . ,

∂ ûkSORIT2FPC
∂ ¯̂w1nk

,
∂ ûkSORIT2FPC

∂ ¯̂w21
,

. . .,
∂ ûkSORIT2FPC
∂ ¯̂w2nk

,. . .,
∂ ûkSORIT2FPC

∂ ¯̂wnj1
,. . .,

∂ ûkSORIT2FPC
∂ ¯̂wninj

]
Pm̂ (t)

=
∂ ûkSORIT2FPC

∂m̂

=

[
∂ ûkSORIT2FPC

∂m̂11
,. . .,

∂ ûkSORIT2FPC
∂m̂1nk

,
∂ ûkSORIT2FPC

∂m̂21
,

. . .,
∂ ûkSORIT2FPC
∂m̂2nk

,. . .,
∂ ûkSORIT2FPC

∂m̂nj1
, . . . ,

∂ ûkSORIT2FPC
∂m̂ninj

]
P v̂ (t)

=
∂ ûkSORIT2FPC

∂ v̂

=

[
∂ ûkSORIT2FPC

∂ v̂11
, . . . ,

∂ ûkSORIT2FPC
∂ v̂1nk

,
∂ ûkSORIT2FPC

∂ v̂21
,

. . .,
∂ ûkSORIT2FPC

∂ v̂2nk
,. . .,

∂ ûkSORIT2FPC
∂ v̂nj1

,. . .,
∂ ûkSORIT2FPC

∂ v̂ninj

]
P ˆ̄v (t)

=
∂ ûkSORIT2FPC

∂ ˆ̄v

=

[
∂ ûkSORIT2FPC

∂ ˆ̄v11
, . . . ,

∂ ûkSORIT2FPC
∂ ˆ̄v1nk

,
∂ ûkSORIT2FPC

∂ ˆ̄v21
,

. . .,
∂ ûkSORIT2FPC

∂ ˆ̄v2nk
,. . .,

∂ ûkSORIT2FPC
∂ ˆ̄vnj1

,. . .,
∂ ûkSORIT2FPC

∂ ˆ̄vninj

]

Using the gradient descent method for (35), yields

V̇ (s (t + 1)) = V̇ (s (t))+1V̇ (s (t))

∼= V̇ (s (t))+
[
∂V̇ (s (t))
∂χ

]T
1χ (37)

where1V̇ (s (k)) and1χ are the changes in V̇ (s (k)) and χ ,
respectively.

Applying the chain rule, we obtained

∂V̇ (s (t))
∂χ

=
∂V̇ (s (t))

∂ ûkSORIT2FPC

∂ ûkSORIT2FPC
∂χ

=
∂s (t) ṡ (t)

∂ ûkSORIT2FPC

∂ ûkSORIT2FPC
∂χ

(38)

Using (26), yields

∂V̇ (s (t))
∂χ

= −s (t) g0 (x (t))
∂ ûkSORIT2FPC

∂χ

= −s (t) g0 (x (t))Pχ (t) (39)

From (27)-(31), we obtained

1χ = −η̂χ
∂s (t) ṡ (t)
∂χ

= η̂χ s (t) g0 (x (t))Pχ (t) (40)

Substituting (39), (40) into (37)

1V̇ (s (t))

=

[
∂V̇ (s (t))
∂χ

]T
1χ

=
[
−s (t) g0 (x (t))Pχ (t)

]T
∗ η̂χ s (t) g0 (x (t))Pχ (t)

= −s2 (t) (g0 (x (t)))2 η̂χPχ (t) (41)

From (41), if η̂χ is chosen as a positive value, then
1V̇ (s (t)) < 0. Consequently, the stability of the pro-
posed SORIT2FPC control system can be guaranteed by the
Lyapunov stability theorem.

B. THE FUZZY COMPENSATOR CONTROLLER
In this part, a fuzzy compensator is designed to deal with the
approximation error in (21). In order to quickly scope the ε(t),
only three simple rules are used as follows:

Rule 1 : If si is POS, then uiF is FP

Rule 2 : If si is ZE, then uiF is FZ

Rule 1 : If si is NEG, then uiF is FN (42)

where POS, FP are the positive membership functions for the
input and output; ZE, FZ are the zero membership functions
for the input and output; NEG, FN are the negative member-
ship functions for input and output; si, uiF are the input and
the fuzzy control signal at the ith step.
The fuzzy rule membership functions for this compensator

are shown in Fig. 4 in which the input membership functions
POS, ZE, NEG are the triangular-typed functions, and the
output membership functions FP, FZ, FN are the singletons.

The output of the fuzzy compensator controller can be
obtained by the center-of-gravity method as

uF =

3∑
a=1

αaβa

3∑
a=1

βa

= α1β1 + α2β2 + α3β3 (43)

10510 VOLUME 7, 2019



T.-L. Le: Self-Organizing Recurrent Interval Type-2 Petri Fuzzy Design for Time-Varying Delay Systems

FIGURE 4. The fuzzy input and output membership functions for the
compensator controller.

where β1, β2, β3 and α1, α2, α3 are the firing strengths and
the weights of fuzzy rules; β1, β2, β3 are greater than or equal
to zero, and based on the special case of the triangular mem-
bership function, we can obtain β1+β2+β3 = 1. For simple
computation, let α1 = α̂, α2 = 0 and α3 = −α̂. Therefore,
when the input si going to the input membership function,
only four cases can occur [39]:
Case 1: si > sPOS
Then

β1 = 1, β2 = β3 = 0 => uF = α1 = α̂ (44)

Case 2: 0 < si < sPOS
Then

β1 > 0, β2 ≥ 1, β3 = 0 => uF = α1β1 = α̂β1 (45)

Case 3: sNEG < si ≤ 0
Then

β1 = 0, β2 > 0, β3 ≤ 1 => uF = α3β3 = −α̂β3 (46)

Case 4: si < sNEG
Then

β1 = β2 = 0, β3 = 1 => uF = α3 = −α̂ (47)

From (44)-(47), the general equation for computation fuzzy
output is obtained:

uF = α̂ (β1 − β3) (48)

In order to achieve better control performance, the adaptive
laws for updating α̂ from [39] is chosen as:

˙̂α = si(t) (β1 − β3) (49)

IV. ILLUSTRATIVE EXAMPLES
Considering the following Henon system with time-varying
delays in [40], which is expressed as:

x1(k + 1) = − [cx1(k)+ (1− c)x1(k − d(k))]2

+ 0.3x2(k)+ 1.4+ u(k)x2(k + 1)

= −cx1(k)+ (1− c)x1(k − d(k)) (50)

where c ∈ [0, 1] is the retarded coefficient, d(k) is the
time-varying state delay, which is randomly selected in the
range [3, 6]. The signal x1(k−d(k)) represents a signal x1(k)
that is delayed (k − d(k)) steps. The u(k) is the control
signal, which is applied to control the system to achieve the
stabilization state.

FIGURE 5. The block diagram of SORIT2FPC control system.

The scheme for the time-varying delays control system is
shown in Fig. 5. The input for the proposed SORIT2FPC
control system is the output of the high-order sliding sur-
face and its derivative. The maximum number of T2GMF in
each input is limited to 7 MFs. The states of the open-loop
for Henon system are shown in Fig. 6. In this simulation,
the values c = 0.3 and c = 0.8 are considered to illustrate the
effectiveness of the proposed control system. The initial states
of system are x1(k) = 1, x2(k) = 0. The initial parameters for
the SORIT2FPC are chosen as ηw = 0.1, ηm = 0.05, ηv =
0.05, m1j = m2j = [−0.300.3], v1j = v2j = [0.10.10.1],
v̄1j = v̄2j = [0.20.20.2], vinit = 0.5, 1v = 0.1, rij = 0.3
Tg = 0.1 and Td = 0.03.

FIGURE 6. State of the open-loop for Henon system.

Figures 7 and 11 are the state of the closed-loop for the
Henon system with c = 0.3 and c = 0.8, respectively and
in which the blue-line and red-line are the outputs of the
system using the proposed network with and without Petri
nets, respectively. It can be seen that, when the Petri nets
are applied, the control system can quickly achieve a stable
state with a smaller tracking error than the controller without
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FIGURE 7. State of the closed-loop for Henon system with c = 0.3.

FIGURE 8. The control signals for Henon system with c = 0.3.

FIGURE 9. The random values d(k) for Henon system with c = 0.3.

Petri nets. The control signals for the Henon system are
shown in Fig. 8 and Fig. 12 in which, at the initial phase,
the fuzzy compensator controller provides a large contri-
bution for the total control effort to deal with the large
tracking error, and then the SORIT2FPC controller plays
the main controller to provide the desired control effort.
The time-varying state delay term for two cases are shown
in Fig. 9 and Fig. 13. The change in the number ofMFs during

FIGURE 10. The number of MFs for SORIT2FPC controller with c = 0.3.

FIGURE 11. State of the closed-loop for Henon system with c = 0.8.

TABLE 1. Comparison results in RMSE.

the simulation time is given in Fig. 10 and Fig. 14 in which,
at the initial phase, the self-organizing algorithm quickly
generates the new MFs and new rules to scope the system
errors, and quickly converges to the suitable rules after the
system achieves the stabilization state. The root mean square
errors (RMSE) comparison for both cases using different
controllers are shown in Table 1. In both cases, it can be seen
that the SORIT2FPC controller for Henon system can quickly
achieve the stabilization state with the smallest tracking error.
In Table 1, the comparison the results of the proposed network
with and without Petri nets show that the SORIT2FPC can
achieve better control performance. The Petri layer with a
dynamic threshold can eliminate unsuitable rules, therefore,
the computational time can be reduced and the system perfor-
mance can be improved.
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FIGURE 12. The control signals for Henon system with c = 0.8.

FIGURE 13. The random values d(k) for Henon system with c = 0.8.

FIGURE 14. The number of MFs for SORIT2FPC controller with c = 0.8.

V. CONCLUSION
In this study, a novel adaptive SORIT2FPC controller
combined with a fuzzy compensator controller is pro-
vided for controlling the time-varying delay systems. The
major contribution of this work includes the development
of a SORIT2PFC network which has the adaptive laws
for online updating parameters; a self-organizing algo-
rithm for autonomously achieves a suitable construction of
SORIT2PFC network; the convergence of the system is
proven by Lyapunov function analysis approach; the recur-
rent term and fuzzy Petri nets are applied to enhance sys-
tem performance and to reduce the computational burden.

Finally, the numerical simulation results of the time-varying
delay systems have shown the effectiveness of the proposed
control system. Choosing the threshold for generating and
deleting the rules greatly affects the performance of the con-
trol systems. Therefore, applying the estimation method to
estimate these thresholds will be our future work.
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