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Abstract. This paper aims to design a self-evolving function-link type-2 fuzzy neural network for application in controlling
antilock braking systems. In this control scheme, the self-evolving algorithm is applied to autonomously construct the control
network without an initial rule-base. The function-link is designed to give the interval type-2 fuzzy neural network has more
freedom in adjusting the parameters. Based on the steepest descent gradient method and the Lyapunov theory, the adaptive
laws for the proposed system are derived, and the control system stability is guaranteed. Further, to rapidly achieve the
desired control performance, an online particle swarm optimization algorithm is used to optimize the learning rates for the
parameter adaptive laws. The performance of the control system is assessed via multiple simulation results of the antilock
braking system response under various road conditions.
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1. Introduction

Recently, fuzzy controllers and neural networks
have attracted many researchers and have been
successfully applied in various fields such as con-
trol problems, system identification, classification,
prediction and medical diagnosis F–6]. The fuzzy
system, which expresses the relationship between the
antecedent and the consequent by “IF-THEN” rules,
uses the linguistic variable and membership func-
tions. Since type-1 fuzzy logic system (T1FLS) was
introduced in [7], it has been successfully applied
to a wide range of areas. However, owing to the
precise sets, T1FLS cannot eliminate the effects
of the uncertainties [8]. To overcome this prob-
lem, in [9], Zadeh introduced type-2 fuzzy logic
systems (T2FLS), which supposed it could cover
the uncertainties using the type-2 membership func-
tions (T2MFs) [10]. Indeed, many studies indicate
under the same condition, a T2FLS can handle the
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uncertainties better than a T1FLS [8, 10, 11]. For
reducing the computational cost of T2FLS, Liang
and Mendel developed the interval type-2 fuzzy
logic systems (IT2FLS) [12]. By applying the simple
structure, in recent years, the interval type-2 fuzzy
neural network (IT2FNN) has attracted the atten-
tion of many researchers [13–17]. In 2016, Sumati
et al. introduced the parallel interval type-2 subset-
hood neural fuzzy inference system [13]. Also, in
2016, Li et al. proposed an adaptive sliding mode
control for interval type-2 fuzzy systems [15]. In
2017, Herman et al. provided the interval type-2 fuzzy
logic system for handling the uncertainty effects in
brain-computer interface classification [16]. How-
ever, determining a network size for IT2FLS is very
important and it significantly influences the control
system performance. In [18–21], the authors provided
a self-organizing algorithm to self-construct the net-
work size. On the other hand, the self-organizing
algorithm also requires the design of an initial struc-
ture for the network. To overcome this disadvantage,
the self-evolving algorithm was proposed in [22–24],
which can self-construct the network size without
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designing the initial structure. However, in the men-
tioned studies, the learning rates in adaptive laws
are fixed and chosen by the trial-and-error method.
This study addresses this problem by proposing the
PSO algorithm to find the optimal learning rates for
self-evolving IT2FNN and also combines with the
properties of the functional link network (FLN) to
improve the performance.

The functional link network was first introduced
by Pao [25], which expanded the network inputs to
a higher dimension for exploitating the more strik-
ing feature of the original data. The FLN outputs are
generated by a nonlinear combination of the origi-
nal inputs; therefore, it can improve the accuracy of
the nonlinear function approximation [26]. Recently,
many researchers have applied the FLN to improve
the performance of control systems [27–32]. In 2014,
Lin et al. provided the SoPC-based function-link
cerebellar model articulation control system design
for magnetic ball levitation systems [28]. In 2015,
Sivachitra and Vijayachitra proposed a metacogni-
tive fully complex-valued functional link network
for solving real-valued classification problems [29].
In 2017, Lotfi and Rezaee presented a competitive
functional link artificial neural network as a univer-
sal approximator [30]. Combining with the functional
link network, the self-evolving IT2FNN is referred
as a self-evolving function-link type-2 fuzzy neural
network (SEFIT2FNN).

The particle swarm optimization (PSO) algorithm
is an optimization technique based on mimicking
the social behavior of bird flocking or fish school-
ing to find the global minimum of an objective
function [33]. With the ability to solve nonlinear
problems and having many advantages such as rapid
convergence, as well as simplicity of understand-
ing and implementation, it has been applied in many
fields [34]. In recent years, the PSO has often been
used to find the optimal parameters for various con-
trol systems such as PID, SMC, LQR and neural
fuzzy [35–41]. In the adaptive controller, determin-
ing the suitable learning rates for adaptive laws is
very important and it is highly influential to the
system performance. Most previous studies used a
trial-and-error method to obtain these values, but
it is difficult to achieve the most suitable values
and it always takes a long time. Therefore, this
study examines the PSO algorithm to obtain the
learning rates for updating the weights, the means
and the variances of Gaussian membership function
in the SEFT2FNN. This network is referred as a
PSO-SEFT2FNN.

The proposed controller is applied to control
antilock braking systems (ABS). ABS technology
was first introduced in 1920 and soon thereafter
applied to cars [42]. Nowadays, it has become a
safety-critical system in modern cars. The ABS func-
tion can maximize the longitudinal tire-road friction
while still guaranteeing vehicle steerability. How-
ever, the main issues with the ABS design are
the highly nonlinear uncertainties in vehicle-braking
dynamics, besides the environmental parameters
are difficult to identify exactly. Therefore, design-
ing an adaptive ABS system has recently attracted
many researchers to various control methods includ-
ing sliding mode, fuzzy and neural networks. The
authors in [26] proposed an intelligent hybrid con-
trol system design for antilock braking systems using
self-organizing function-link fuzzy cerebellar model
articulation controller. The study in [43] introduced
the fractional order sliding mode controller design
for antilock braking systems. In 2014, Dadashnialehi
et al. provided the Intelligent sensorless ABS for in-
wheel electric vehicles [42]. In 2015, Wei and Guo
introduced an ABS control strategy for commercial
vehicle [44]. However, most of these studies fail to
achieve satisfactory performance, especially for the
transfer between two road conditions.

In the control scheme, the control signal from our
controller is directly used to control the ABS system.
The studies in [26, 45] designed their networks as
uncertainty observers which were used to estimate the
lumped uncertainty of the ABS system, and then this
uncertainty was used to calculate the control signals
for the ideal controller. By using the direct controller,
our control system is simpler and easier to apply
than the methods in [26, 45]. Compare to previous
researches [26, 41–45], this study proposes an effec-
tive control method for the ABS system, where it is
easy to design the initial network parameters, more
freedom in adjusting the variables, and the learning
rates are optimized. The major contributions of this
study are (i) to develop a self-evolving algorithm
for self-constructing the structure of function-link
IT2FNN from the empty initial rules base and mem-
bership functions; (ii) to design the adaptive laws for
updating network parameters; (iii) to optimize the
learning rates in adaptive laws using the online and
off-line PSO algorithm; (iv) to successfully apply the
function-link network, which can give the adaptive
laws more freedom in adjusting the variables; (v) to
conduct the numerical simulations results of the ABS
to illustrate the effectiveness of the proposed control
method.
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Table 1
The magic formula coefficients

Surface B C D E

Dry tamac 10 1.9 1 0.97
Wet tamac 12 2.3 0.82 1
Snow 5 2 0.3 1
Ice 4 2 0.1 1

Fig. 1. The relationship between (μ) and (λ) for various road
surfaces.

This paper is organized as follows. Section 2
presents the problem formulation of ABS. Section
3 introduces the structure of PSO-SEFT2FNN. The
simulation results of the ABS are presented in Section
4. Finally, a conclusion is presented in Section 5.

2. Formulation of ABS

The goal of the ABS controller is control signal
generation, which can adjust the wheel slip (λ) to
maximize the coefficient of friction (μ) for any given
road condition and vehicular speed [26]. During a
braking operation, the relation between μ and λ under
various road surfaces can be described as the Magic
Formula [46].

μ(λ) = D.sin (C.arctan {B.λ − E[B.λ − arctan (B.λ)]})
(1)

where the stiffness, shape, peak, and curvature fac-
tors are defined by B, C, D, E. These typical values
can be taken in Table 1 [47]. The relation between
μ and λ for various road surfaces is shown in Fig. 1
[26].

Referring to [26, 45], the wheel slip equation is
defined by:

λ (t) = 1 − ωw (t)

ωv (t)
(2)

where ωv (t) and ωw (t) are the angular velocity of the
vehicle and the wheel, respectively. Figure 1 shows
near the point λ = 20% the μ can get the highest
value. Therefore, the target of the controller is gener-
ating a control signal that affects the wheel velocity
to keep the slip at 20%.

2.1. The wheel dynamics

Applying Newton’s law, the dynamic equation of
the wheel’s angular velocity is determined as [26, 45]

ω̇w(t) = 1

Jw

[Tb(t) − Bwωw(t) + Tt(t) (3)

where Jw, Bw are the rotational inertia and the vis-
cous friction of the wheel, respectively. Tb (t) and
Tt (t) are the braking torque and the torque generated
by the road surface and the wheel.

Tt (t) = RwFt (t) (4)

where Rw and Ft (t) are the radius of the wheel and
the tractive force.

Ft (t) = μ (λ) Nv (θ) (5)

where the nominal reaction force Nv (θ) is given as

Nv (θ) = Mvg

4
cos (θ) (6)

where Mv, θ and g are the mass of the vehicle, the
angle of inclination of the road and the gravitational
acceleration constant, respectively.

2.2. The vehicle dynamics

The angular velocity of the vehicle ωv -is defined
by the radius of the wheel Rw and the velocity of the
vehicle Vv- which is given by

ωv (t) = Vv (t)

Rw

(7)

The acceleration of the vehicle is given as [26, 45]
using Newton’s law

V̇v(t) = −1

Mv

[4Ft(t) + BvVv(t) + Fθ] (8)
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where Bv and Fθ (θ) are the vehicular viscous friction
and the force applied to the car, respectively.

Fθ (θ) = Mvgsin (θ) (9)

From (2), the derivative of wheel slip is obtained
as

λ̇ (t)= (1−λ (t)) ω̇v − ω̇w

ωv

= −ω̇v

ωv

λ (t) + ω̇v − ω̇w

ωv
(10)

From (3), (7), (8) and (10) obtains

λ̇ (t) = f (λ; t) + g (t) u (t) (11)

where the control effort u(t) is the braking torque
Tb(t), and

f = 4Ft+BvRvωv+Fv

MvRwωv
λ − (4Ft+BvRvωv+Fθ )Jw−(Bwωw−T )MvRw

MvRwωvJw

g = 1
Jwωv

Considering the uncertainties and measurement
noise obtains

λ̇(t) = [f0(λ; t)]+(λ; t)]+[g0(t)+�g(t)]u(t) + d(t)

= f0 (λ; t) + g0 (t) u (t) + β (λ; t)
(12)

where f0 (λ; t), g0 (t) and �f (λ; t), �g (t) denote the
nominal parts and the uncertainties of f (λ; t), g (t),
respectively.d (t) andβλ; t are the measurement noise
and the lumped uncertainty, respectively.

β (λ; t) = �f (λ; t) + �g (t) u (t) + d (t) (13)

From (12), the ideal controller can be defined as

u∗ (t) = 1

g0 (t)

[
λ̇d (t) − f0 (λ; t) − β (λ; t) + kλe (t)

]
(14)

where λe (t) is the error between the desired slip tra-
jectory λd (t) and the wheel slip λ (t)

λe (t) = λd (t) − λ (t) (15)

From (14) and (12) obtains

λ̇e (t) + kλe (t) = 0 (16)

If the feedback gain k is assigned by the Hur-
witz polynomial approximation, then lim

t→∞ λe(t) = 0.

Since β (x (t)) cannot be obtained exactly, the u∗ (t) in
(14) cannot be obtained. Hence, this study proposed
a PSO-SEFT2FNN control system, which is used to
mimic the ideal controller u∗ (t).

Fig. 2. Block diagram of PSO-SEFT2FNN control system for
ABS.

3. PSO-SEFT2FNNC

The block diagram of the ABS control system is
shown in Fig. 2, which includes the PSO-SEFT2FNN
as the main controller and a robust compensation con-
troller. The sliding surface also is applied to enhance
the stability and performance of the control system.
Figure 3 shows the structure of the PSO-SEFT2FNN,
consisting of the function-link neural network, the
IT2FNN and the self-evolving algorithm.

3.1. Structure of function-link network

In this study, the function-link network uses
trigonometry to expand the input data (see Fig. 4).
Then, the jth output of FLN has applied to calculate
the weights for the IT2FNN, which can be obtained
by:

hj =fj1ϕ1+fj2ϕ2. . .fjmϕm + . . . + fjnmϕnm

=
nm∑

m−1

fjmϕm = f T
j ϕ (17)

where ϕ = [ϕ1, ϕ2, . . . ϕm, . . . , ϕnm ]T is the output
of FLN, and fjm is the connecting weights between
hj and ϕm, and m = 1, . . . , nm. For example, consid-
ering the FLN with two input, I= [i1, i2]T , then ϕ =
[i1, sin (πi1), cos (πi1) , i2, sin (πi2) , cos (πi2), i1i2]T .
The initial value for the connecting weights can be
assigned a random value.
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Fig. 3. Structure of the function-link IT2FNN.

Fig. 4. Structure of the function-link network.

3.2. Structure of function-link IT2FNN

The fuzzy inference rules for the IT2FNN can be
shown by the jth rule

IF I1 is κ̃1j and . . . and Ii is κ̃ij and . . . and Inisκ̃nj

THEN outj = χ̃j

(18)

where κ̃ij and χ̃j are the type-2 fuzzy membership
functions for the input and output, respectively. j =
1, . . . , nj and i = 1, . . . , ni are denoted the jth rule
and the ith fuzzy input.

As shown in Fig. 3, the structure of the IT2FNN
has six layers:

1) Input layer: This layer is used to prepare the
inputs for the membership function layer and
the FNN. All input signals are directly trans-
ferred without any computation.

2) Membership function layer: Each node in this
layer is a type-2 Gaussian membership function
(T2GMF) κ̃ij, which has the fixed mean and
uncertainty in the standard deviation. Since κ̃ij

is type-2, each output of this layer has two val-
ues including: the upper membership function
κ̄ij and the lower membership function κij

κ̄ij = exp

{
−1

2

(
Ii − mij

v̄ij

)2
}

;

κij = exp

{
−1

2

(
Ii − mij

vij

)2
}

(19)

where v̄ij , vij and mij are the upper variance,
lower variance and the mean of the T2GMF,
respectively.

3) Firing layer: This layer performs the product
operation of all elements in the same block jth.
The output of this layer is also an interval value
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6 T.-L. Le / Intelligent fuzzy controller design for antilock braking systems

Rj = [rj, r̄j
]
, and can be depicted as:

r̄j =
nj∏

j=1

κ̄ij and rj =
nj∏

j=1

κij (20)

4) Output weight layer: By using the output of the
FLN, as can be seen in (17), the output of this
layer is given as:

h̄=

⎡
⎢⎢⎣

h1

...

h̄nj

⎤
⎥⎥⎦=
⎡
⎢⎢⎣

f̄11 . . . f̄1nm

...
. . .

...

f̄nj1 . . . f̄njnm

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ϕ1

...

ϕnm

⎤
⎥⎥⎦= F̄T ϕ

(21)

h=

⎡
⎢⎢⎣

h1

...

h̄nj

⎤
⎥⎥⎦=
⎡
⎢⎢⎢⎣

f
11

. . . f
1nm

...
. . .

...

f
nj1

. . . f
njnm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

ϕ1

...

ϕnm

⎤
⎥⎥⎦=FT ϕ

(22)
5) Pre-output layer: This layer performs the

defuzzification operation by using the center of
gravity algorithm and the Karnik-Mendel (KM)
algorithm in [48].

ol =
∑nj

j=1 rl
jh

j∑nj

j=1 rl
j

and or =
∑nj

j=1 rr
jh̄

j∑nj

j=1 rr
j

(23)

where rl
j and rr

j are given by

rl
j =

{
r̄j, j ≤ L

rj j > L
andrr

j =
{

r̄j, j ≤ R

rj j > R

(24)
6) Output layer: This layer performs the average

operation between the interval value [ol, or] in
the previous layer to obtain the final output.

OIT2FNN = ol + or

2
(25)

3.3. Self-evolving algorithm for FIT2FNN

This section presents the mechanism of the gener-
ator and deleting the rule. The first rule (membership
function) will be generated based on the first input
in the input layer. After that, in the next iteration, the
self-evolving algorithm will determine the generation
of new rules or delete unnecessary rules. Finally, all
the parameters of the existing rules can be updated
based on the adaptive law, which is designed in the
next section.

The condition for generating the new rule is con-
sidered as

IfHI
g < ThgThen{generating a new rule} (26)

HI
g = max[κI1, κI2, . . . κI1k] (27)

where Thg and HI
g are the prior threshold and the

maximum membership grade, respectively.
Since the membership grade is the interval value,

its average is given by:

κIj = 1

2

(
κ̄Ij + κIj

)
(28)

The parameters for the new rule are given as fol-
lows

m
N(k)+1=ii(k)
ij (29)

[
v̄
N(k)+1
ij , vN(k)+1

]
= [vinit + �v, vinit − �v]

(30)

f̄new
N(k)+1 = [finit, finit, . . . , finit

]T ∈ �m

fN(k)+1
new

= [finit, finit, . . . , finit

]T ∈ �m
(31)

where vinit and �v are the initial variance values
and its uncertainty term, respectively. The weight
and number output of the function-link network are
denoted by finit and m. The total number of rules at
the kth step is denoted by N(k).

The condition for deleting the unnecessary rule is
considered as

IfHI
d < ThdThen{deleting unnecessary rule}

(32)

HI
d = arg min[κI1, κI2, . . . , κIk] (33)

where Thd and HI
d are the prior threshold for deleting

the rule and the minimum membership grade of the
Ith input, respectively.

3.4. The parameter learning algorithm for
FIT2FNN

The ideal controller u∗ in (14) cannot be obtained
because the lumped uncertainty β (λ; t) is unknown.
Therefore, an optimal PSO-SEFT2FNN controller
u∗

PSO−SEFT2FNN is used to approximate the u∗ as:

u∗(t)=u∗
PSO−SEFT2FNN

(
f ∗, f̄ ∗, m∗

ij, v
∗
ij, v̄

∗
ij, t
)
+∈ (t) (34)
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where the approximation error is denoted by ε(t),
and f ∗, f̄ ∗

, m∗
ij, v

∗
ij, v̄

∗
ij are the ideal parameters

of f , f̄ , mij, vij, v̄ij , respectively. Since the ideal
parameters cannot be obtained exactly, an online esti-
mation parameter f̂ , , m̂ij, ν̂ij, can be designed
to obtain the estimation controller û

PSO−SEFT2FNN
.

Moreover, the robust compensation controller ûB is
designed for handling the approximation error.

û(t) = û
PSO−SEFT2FNN

(
f̂ , , m̂ij, ν̂ij, , t

)
+ ûB(t)

(35)
where

uB(t) = B̂(t)sgn(s(t)) and = ηB |s(t)| (36)

The high-order sliding mode from [49, 50] is
applied to enhance control performance

s (t) =
l−1∑
l=0

(n − 1)!

l! (n − l − 1)!

(
∂

∂t

)n−l−1

ζle

=λ(n−1)
e +(n−1) ζλ(n−2)

e +(n−2) ζ2λ(n−3)
e . . .+ζn−1λe

(37)

where ζ and n are a positive constant and the order of
sliding surface, respectively.

Consider the change of (37)

ṡ(t) = λ(n)
e +(n − 1)+ζλ(n−1)

e +(n − 2) ζ2λ(n−2)
e . . . + ζn−1λ1

e

= λn
e + KT λe

(38)

where the positive gain vector is defined as K =
[(n − 1)ζ, (n − 2)ζ2, . . . ζn−1]T ∈ Rn−1. The values
for n and ζ are chosen as the coefficients of a Hurwitz
polynomial.

Define the Lyapunov cost function as

V (s(t)) = 1

2
s2(t), thenV̇ (s (t)) = s (t) ṡ (t) (39)

Apply (12), (15) and (38) into (39) to obtain

V̇ (s (t))=s (t) [λ̇d (t)−f0 (λ; t)−g0 (t) (ûPSO−SEFT2FNN (t)

+ ûR (t)) − β (λ; t) + ζλe(t)]
(40)

Apply the gradient descent method and the chain
rule, to obtain the online update laws for parameters
f̂ , , m̂ij, ν̂ij, as:

(t + 1) = (t) − η̂f
∂s(t)ṡ(t)

∂

= (t) + 1
2 η̂f s (t) g0 (t)

rl
j∑nj

j=1 rl
j

ϕ
(41)

(t + 1) = (t) − η̂f
∂s(t)ṡ(t)

∂

= (t) + 1
2 η̂f s (t) g0 (t)

rr
j∑nj

j=1 rr
j

ϕ
(42)

m̂ij (t + 1) = m̂i
j (t) − η̂m

∂s(t)ṡ(t)
∂m̂ij

= m̂i
j(t) + 1

2 η̂ms(t)g0(t)

(
(hi−yl)∑nj

j=1
rl
j

∂rl
j

∂m̂ij
+ (h̄i−yr )∑nj

j=1
rr
j

∂rr
j

∂m̂ij

)
(43)

(t + 1) = (t) − η̂v
∂s(t)ṡ(t)

∂

= (t) + 1
2 η̂vs (t) g0 (t)

(
(hi−yl)∑nj

j=1
rl
j

∂rl
j

∂

+ (h̄i−yr)∑nj

j=1
rr
j

∂rr
j

∂

)
(44)

v̂ij (t + 1) = v̂ij (t) − η̂v
∂s(t)ṡ(t)

∂v̂
ij

= v̂ij (t) + 1
2 η̂vs (t) g0 (t)

(
(hi−yl)∑nj

j=1
rl
j

∂rl
j

∂v̂
ij

+ (h̄i−yr)∑nj

j=1
rr
j

∂rr
j

∂v̂
ij

)
(45)

where the learning-rates n̂f , n̂m, n̂n can be obtained
by the PSO algorithm, which is presented in Section
3.5. The terms rl

j and rr
j in (41–45) can be rj or r̄j .

∂rj

∂m̂ij

= ∂rj

∂κ
j

j

∂κi
j

∂m̂ij

=rj

xj −m̂ij(
v̂ij

)2
;

∂r̄j

∂m̂ij

= ∂r̄j

∂κ̄i
j

∂κ̄i
j

∂m̂ij

= r̄j
xj − m̂ij( )2

(46)

∂rj

∂

=
∂rj

∂κ
j

j

∂κi
j

∂

=rj

(
xj − m̂ij

)2( )3
;

∂r̄j

∂

= ∂r̄j

∂κ̄i
j

∂κ̄i
j

∂

= r̄j

(
xj − m̂ij

)2( )3

(47)

∂rj

∂v̂
ij

=
∂rj

∂κi
j

∂κi
j

∂v̂
ij

=rj

(
xj − m̂ij

)2(
v̂

ij

)3
;

∂r̄j

∂v̂
ij

= ∂r̄j

∂κ̄i
j

∂κ̄i
j

∂v̂
ij

= r̄j

(
xj − m̂ij

)2(
v̂

ij

)3

(48)

By applying the adaptive laws for tuning parame-
ters in (41–45), the PSO-SEFT2FNN controller can
achieve the asymptotic stability.

Proof the convergence: Consider the change of the
Lyapunov function in (39):

V̇ (s (t)) = s (t) ṡ (t) (49)
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Defined �z (t)= ∂ŷ
PSO−SET2FBELC

∂z
, where z= f̂ , , m̂, v̂, v̂

(50)

Apply the gradient descent method into (49) to
obtain

V̇ (s (t + 1)) = V̇ (s (t)) + �V̇ (s (t)) ∼= V̇ (s (t)) +
[

∂V̇ (s (t))

∂z

]T

�z

(51)

where �z and �V̇ (s (t)) are the change in z and
V̇ (s (t)), respectively.

Applying the chain rule, yields

∂V̇ (s(t))
∂z

= ∂V̇ (s(t))
∂ŷ

PSO−SEFT2FNN

∂ŷ
PSO−SEFT2FNN

∂z

= ∂s(t)ṡ(t)
∂ŷ

PSO−SEFT2FNN

∂ŷ
PSO−SEFT2FNN

∂z

(52)

From (40) and (51), we have

∂V̇ (s (t))

∂z
= −s (t)

∂ŷ
PSO−SEFT2FNN

∂z
= −s (t) �z (t)

(53)
From (41–45), one obtains

�z = −η̂z

∂s (t) ṡ (t)

∂z
= η̂zs (t) �z (t) (54)

Using (53), (54) and (51), we have

�V̇ (s (t))=
[

∂V̇ (s (t))

∂z

]T

�z=
[
−s (t) �z (t)

]T
η̂zs (t) �z (t)

= −s2 (t) η̂z�z (t) (55)

In (55), it is obviousif η̂z is chosen as a positive
value then �V̇ is negative. Hence, the stability of
the system is guaranteed according to the Lyapunov
theory.

3.5. Particle swarm optimization

This section presents the application of PSO algo-
rithm to optimize the learning rates η̂f , η̂m, η̂n. The
flowchart for the PSO algorithm is shown in Fig. 5,
and it can be presented by the following steps.
Step 1. Randomly initialize np to set the values of
η̂f , η̂m, η̂v.

Step 2. In turn, run the control system with each set
learning rate and then calculate the fitness function.

fitness = exp

(
λe (t)2

�2
p

)
(56)

where �p is a precise fitness function.

Fig. 5. The PSO flowchart for obtaining the optimal learning rates.

Step 3. Based on the fitness function of the particles
and the swarm, choose the best position of the particle
(pl

Best q) and the best position of the swarm (gl
Best q)

Step 4. Exit the PSO algorithm if reachese the max-
imum iteration. Otherwise, go to the next step.

Step 5. Modify all the particles by using the adaptive
law given in [39], and then go to Step 2.

pl
q (n + 1) = pl

q (n) + vl
q (n + 1) (57)

vl
q (n + 1) = vl

q (n) + C1 ∗ β1 ∗
[
pl

Best q − pl
q (n)

]
+C2 ∗ β2 ∗

[
gl

Best q − pl
q (n)

]
(58)

where β1, β2 and C1, C2 are the random variables
and the positive acceleration factors, respectively.

4. Simulation results

In this section, the simulation results of ABS con-
trol system are considered under three road condition
cases. The goal of the control system is to generate
the braking torque, which can force the wheel slip
λ (t) to track the desired slip trajectory λd (t), mean-
ing the vehicle can achieve the maximum value of
the tractive forces. The parameters of the vehicle are
shown in Table 2. The desired slip trajectory is given
by [26, 45] λ̇d (t) = −10λd (t) + 10λc (t). To achieve
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Table 2
The vehicle parameters

Parameters Value

Mv(kg) 4 × 342
Bv(Ns) 6
Jw(N.m.s2) 1.13
Rw(m) 0.33
Bw(Ns) 4
g(m/s2) 9.8

Table 3
Comparison results in RMSE

Case 1 Case 2 Case 3

Neural Network hybrid [45] 0.0049 0.0173 0.0168
Intelligent hybrid [26] 0.0005 0.0023 0.0010
SOT2FNN [41] 0.00034 0.00025 0.00096
SEFT2FNN 0.00042 0.00034 0.00098
PSO-SEFT2FNN 0.00028 0.00019 0.00087

the maximum slip ratio, λc (t) is chosen as 0.2 (see
Fig. 1). From (2), the term λ (t) will go to infinity
when ωv (t) goes to zero. Hence, in all simulation
cases, we consider the control system until the vehi-
cle velocity achieves 5 m/s. To show the effectiveness
of the proposed control system, the comparison root
mean square error (RMSE) is shown in Table 3.

Initially, the rule base in the PSO-SEFT2FNN
is empty. All rules can be auto-generated by using
the self-evolving algorithm. The initial parameters
as np = 20, nd = 3, c1 = c2 = 0.07, n = 3, λ = 0.05,
vinit = 0.5, �v = 0.1, Thg = 0.1 and Thd = 0.05.

Case 1: The dry asphalt road
This case considers the braking action occurring on

a dry asphalt road. Assume when the braking action
is applied, the vehicle velocity is 25 m/s. Figure 6
presents the ABS response by using the SEFT2FNN
without a PSO algorithm. Figure 6(a) shows the angu-
lar velocity of the wheel and the vehicle, respectively.
Figure 6(b) shows the control force applied to the
ABS system. Figure 6(c) presents the slip of the sys-
tem and the slip reference, respectively. Figures 7–9
show the ABS response using the PSO-SEFT2FNN.
Figure 7(a) shows the angular velocity of the wheel
and the vehicle, respectively. The control force and
the slip of the ABS system are shown in Fig. 7(b) and
7(c), respectively. From Fig. 8, it is obvious the PSO
algorithm can rapidly optimize the learning rates for
the controller. The change of membership function is
shown in Fig. 9.

Case 2: The icy road
This case considers the braking action occurring on

an icy asphalt road. Assume when braking action is

Fig. 6. The ABS response using the SEFT2FNN.

Fig. 7. The ABS response using the PSO-SEFT2FNN.

applied, the vehicle velocity is 12.5 m/s. Figure 10
gives the ABS response by using the SEFT2FNN
without a PSO algorithm. Figure 10(a) shows the
angular velocity of the wheel and the vehicle, respec-
tively. Figure 10(b) and 10(c) givethe control force
and the slip of the ABS system, respectively.TheABS
response using the PSO-SEFT2FNN is shown in
Figs. 11–13. Figure 11(a) shows the angular velocity
of the wheel and the vehicle, respectively. The con-
trol force and the slip of the ABS system are shown
in Fig. 11(b) and 11(c), respectively.The online PSO
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Fig. 8. The online PSO learning-rates adjustment.

Fig. 9. The number of MFs using the PSO-SEFT2FNN.

Fig. 10. The ABS response using the SEFT2FNN.

learning-rates adjustment and the change of mem-
bership function are shown in Figs. 12 and 13,
respectively.

Case 3: Wet asphalt road to icy road
This case considers the braking action occurring

when the vehicle transfers from a wet asphalt road to

Fig. 11. The ABS response using the PSO-SEFT2FNN.

Fig. 12. The online PSO learning-rates adjustment.

an icy road. Assume when braking action is applied,
the vehicle velocity is 12.5 m/s. Figure 14 presents the
ABS response by using the SEFT2FNN without PSO
algorithm. The angular velocity of the wheel and the
vehicle are shown in Fig. 14(a) and 14(b) shows the
control force applied to the ABS system. Figure 14(c)
presents the slip of the system and the slip reference,
respectively. Figures 15–17 show the ABS response
using the PSO-SEFT2FNN. Figure 15(a) shows the
angular velocity of the wheel and the vehicle, respec-
tively. The control force and the slip of the ABS
system are shown in Fig. 15(b) and 15(c), respec-
tively. The online PSO learning-rates adjustment are
shown in Figs. 16 and 17 shows the number of the
membership function rapidly increases when the road
condition changes and after that, it will converge to
the optimal number of rules.

In all three cases, it is obvious the PSO algorithm
can help the controller rapidly achieve the optimal
the learning rates, so the control signal of the PSO-
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Fig. 13. The number of MFs using the PSO-SEFT2FNN.

Fig. 14. The ABS response using the SEFT2FNN.

Fig. 15. The ABS response using the PSO-SEFT2FNN.

SEFT2FNN is smoother than the SEFT2FNN without
PSO. Figures 9, 13 and 17 show, at the beginning,
the controller without any rule can rapidly gener-
ate the rules, and then, the number of rules can be

Fig. 16. The online PSO learning-rates adjustment.

Fig. 17. The number of MFs using the PSO-SEFT2FNN.

optimized by the self-evolving algorithm to achieve
better control performance. To limit the number of
rules, the maximum membership function for each
inputislimited to seven MFs. In the control scheme,
the off-line PSO algorithm is first applied to find the
optimal learning rates for the proposed controller.
After obtaining the optimal learning rates and suitable
parameters, the control system will be controlled with
the online-PSO SEFIT2FNN to rapidly cope with the
changes. During the control process, the parameters
can on-line update to the suitable value by using the
adaptive laws which are described in Section 3.3.

Choosing the threshold for generating and delet-
ing the rules affects much of the control system. If
the generation threshold is large, it will lead to fewer
rules being generated. Contrarily, if the generating
threshold is very small, a huge number of rules are
generated. If the deleting threshold is large, it will
barely delete any rules. Contrarily, if the detecting
threshold is very small, many rules are deleted and
just a few rules remain. Having only a few rules may
cause the control system to achieve suboptimal per-
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formance, whereas a huge number of rules leads to a
large computation time. So choosing these thresholds
by try-and-error is very important.

5. Conclusion

This study proposes a PSO-SEFT2FNN con-
trol system that can achieve favorable control
performance for the antilock braking system. Numer-
ous simulations are conducted under various road
conditions to verify the effectiveness of the con-
trol system. The main contributions of this study
are: successful design of a self-evolving algorithm
for self-constructing the structure of function-link
IT2FNN from the empty initial rules base and mem-
bership functions; successfully design of adaptive
laws for updating network parameters; the learning
rates in adaptive laws are optimized using the online
and off-line PSO algorithm; successfully applica-
tion of the function-link network, which can give the
adaptive laws more freedom in adjusting the vari-
ables; the system’s stability is guaranteed by the
Lyapunov function. Application of the estimation
method to estimate the system state and deal with the
noise disturbances will be our future work. Finally,
beside the application for the control system, the
proposed method is also suitable for other applica-
tions such as system identification, classification, and
prediction.
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